You will analyze existing research to establish reliable explanations and evaluation criteria, develop metrics, and apply them to assess concept extraction methods in various scenarios.
Anforderungen
- •Solid understanding of machine learning
- •Strong programming skills in Python
- •Prior experience with explainability or XAI methods
- •Independent, reliable, and result-oriented working style
- •Good English communication skills
Deine Aufgaben
- •Conduct a literature review on explanations.
- •Analyze benchmarks and theoretical foundations.
- •Select or develop suitable evaluation metrics.
- •Integrate metrics into the benchmarking pipeline.
- •Evaluate a concept extraction method in various scenarios.
Deine Vorteile
Interesting tasks in research
Intensive project support
Collaboration with universities
Original Beschreibung
Ort:
Stuttgart
Datum:
27.05.2025
# Masterarbeit - Machine Learning: Concept Extraction Validation Benchmark
**Field of study:** computer science, mathematics, software design, software engineering, technical computer science or comparable.
Machine Learning (ML) models are reaching a maturity level that allows their operational use in businesses. However, in some areas, this use is limited by their ”black box” nature: the decision-making logic and potential errors of a model are not transparent, making it unsuitable for safety-critical applications or those requiring trust in the model. The field of Explainable Artificial Intelligence (XAI) addresses this by providing methods to make model behavior more interpretable. Among these, concept-based and prototype-based methods show promise in offering intuitive insights into model decisions. To truly build trust and ensure safe deployment of models, however, it is not enough for XAI methods to be intuitive — they must also meet some key requirements. For example, the methods need to be reliable and their explanations need to be faithful to the model, while having a complexity level appropriate for human users. To ensure that these properties are met, XAI methods must be rigorously validated. Furthermore, such an evaluation should be systematic, allowing to compare most methods on the same ground. A framework for this is still largely missing in current XAI pipelines.
This thesis investigates the systematic benchmarking of concept-based explanation methods for machine learning models. It adapts an existing benchmarking framework, originally developed for prototype methods, to support the evaluation of concept-based explanations. The project also includes the empirical testing of concept extraction methods, evaluating their effectiveness and reliability using diverse metrics and datasets. The work contributes toward standardizing the evaluation of XAI techniques to ensure that generated explanations are meaningful and faithful to the underlying model.
**Was Sie bei uns tun**
The candidate will first conduct a literature review to identify desirable properties of trustworthy explanations and corresponding evaluation criteria. This includes analyzing existing benchmarks, theoretical foundations, and practical requirements of concept-based XAI methods. Based on this, suitable evaluation metrics will be selected or developed and integrated into the benchmarking pipeline. The newly implemented metrics will then be used to evaluate a concept extraction method in various scenarios.
This requires proficiency in Python and familiarity with modern ML libraries.
Scope:
* Identifying and formalizing evaluation properties for concept-based XAI methods
* Adapting an existing benchmark suite for prototype methods to accommodate concept-based explanations
* Implementing and testing relevant evaluation metrics
* Empirical benchmarking of a selected concept extraction method across multiple datasets and models
**Was Sie mitbringen**
* Solid understanding of machine learning
* Strong programming skills in Python
* Ideally, prior experience with explainability or XAI methods
* Independent, reliable, and result-oriented working style
* Good English communication skills
**Was Sie erwarten können**
* Interesting tasks in applied research
* Intensive support during the project
* Collaboration projekt with University of Stuttgart IFF and RWTH Aachen University DSME
Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt.
Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft.
**Haben wir Ihr Interesse geweckt?**
Frau Lisa Bauer
Recruiting
Tel. +49 711 970-3681
lisa.bauer@ipa.fraunhofer.de
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Kennziffer: 79958
**Stellensegment:**
Training, Test Engineer, Testing, Computer Science, Software Engineer, Education, Engineering, Technology