Nejo Logo
Jobs finden
nach Anstellungsart

Finde Jobs nach Arbeitszeit

  • Geringfügige Jobs
  • Teilzeit Jobs
  • Lehrstellen
  • Praktikumsplätze
nach Stadt

Jobs in deiner Nähe finden

  • Jobs in Wien
  • Jobs in Graz
  • Jobs in Linz
  • Jobs in Salzburg
  • Jobs in Innsbruck
  • weitere Städte
nach Beruf

Erkunde Jobs nach Berufsfeld

  • Fahrer Jobs
  • IT Jobs
  • Feuerwehr Jobs
  • Hausmeister Jobs
  • Vertrieb Jobs
  • weitere Berufe
nach Erfahrungslevel

Jobs passend zu deiner Erfahrung

  • Quereinsteiger Jobs
  • Berufseinsteiger Jobs
  • Manager Jobs
nach Arbeitsweise

Wähle deine bevorzugte Arbeitsweise

  • Remote Jobs
  • Home Office Jobs
Studenten
Schüler
Blog
Jobs finden
nach Anstellungsart

Finde Jobs nach Arbeitszeit

  • Geringfügige Jobs
  • Teilzeit Jobs
  • Lehrstellen
  • Praktikumsplätze
nach Stadt

Jobs in deiner Nähe finden

  • Jobs in Wien
  • Jobs in Graz
  • Jobs in Linz
  • Jobs in Salzburg
  • Jobs in Innsbruck
  • weitere Städte
nach Beruf

Erkunde Jobs nach Berufsfeld

  • Fahrer Jobs
  • IT Jobs
  • Feuerwehr Jobs
  • Hausmeister Jobs
  • Vertrieb Jobs
  • weitere Berufe
nach Erfahrungslevel

Jobs passend zu deiner Erfahrung

  • Quereinsteiger Jobs
  • Berufseinsteiger Jobs
  • Manager Jobs
nach Arbeitsweise

Wähle deine bevorzugte Arbeitsweise

  • Remote Jobs
  • Home Office Jobs
StudentenSchülerBlogNejo LinkedIn

Masterarbeit - Machine Learning: Concept Extraction Validation Benchmark(m/w/x)

Fraunhofer-Gesellschaft
Stuttgart

You will conduct literature reviews and analyze benchmarks in the field of machine learning, focusing on the evaluation of concept extraction methods across various datasets and models.

Anforderungen

  • •Solid understanding of machine learning
  • •Strong programming skills in Python
  • •Ideally, prior experience with explainability or XAI methods
  • •Independent, reliable, and result-oriented working style
  • •Good English communication skills

Deine Aufgaben

  • •Conduct a literature review on trustworthy explanations.
  • •Analyze existing benchmarks and theoretical foundations.
  • •Select or develop evaluation metrics for benchmarking.
  • •Implement and test selected evaluation metrics.
  • •Empirically benchmark a concept extraction method.

Deine Vorteile

Interesting tasks in research
Intensive project support
Collaboration with universities

Original Beschreibung

City: Stuttgart Date: May 27, 2025 # Masterarbeit - Machine Learning: Concept Extraction Validation Benchmark **Field of study:** computer science, mathematics, software design, software engineering, technical computer science or comparable. Machine Learning (ML) models are reaching a maturity level that allows their operational use in businesses. However, in some areas, this use is limited by their ”black box” nature: the decision-making logic and potential errors of a model are not transparent, making it unsuitable for safety-critical applications or those requiring trust in the model. The field of Explainable Artificial Intelligence (XAI) addresses this by providing methods to make model behavior more interpretable. Among these, concept-based and prototype-based methods show promise in offering intuitive insights into model decisions. To truly build trust and ensure safe deployment of models, however, it is not enough for XAI methods to be intuitive — they must must also meet some key requirements. For example, the methods need to be reliable and their explanations need to be faithful to the model, while having a complexity level appropriate for human users. To ensure that these properties are met, XAI methods must be rigorously validated. Furthermore, such an evaluation should be systematic, allowing to compare most methods on the same ground. A framework for this is still largely missing in current XAI pipelines. This thesis investigates the systematic benchmarking of concept-based explanation methods for machine learning models. It adapts an existing benchmarking framework, originally developed for prototype methods, to support the evaluation of concept-based explanations. The project also includes the empirical testing of concept extraction methods, evaluating their effectiveness and reliability using diverse metrics and datasets. The work contributes toward standardizing the evaluation of XAI techniques to ensure that generated explanations are meaningful and faithful to the underlying model. **What you will do** The candidate will first conduct a literature review to identify desirable properties of trustworthy explanations and corresponding evaluation criteria. This includes analyzing existing benchmarks, theoretical foundations, and practical requirements of concept-based XAI methods. Based on this, suitable evaluation metrics will be selected or developed and integrated into the benchmarking pipeline. The newly implemented metrics will then be used to evaluate a concept extraction method in various scenarios. This requires proficiency in Python and familiarity with modern ML libraries. Scope: * Identifying and formalizing evaluation properties for concept-based XAI methods * Adapting an existing benchmark suite for prototype methods to accommodate concept-based explanations * Implementing and testing relevant evaluation metrics * Empirical benchmarking of a selected concept extraction method across multiple datasets and models **What you bring to the table** * Solid understanding of machine learning * Strong programming skills in Python * Ideally, prior experience with explainability or XAI methods * Independent, reliable, and result-oriented working style * Good English communication skills **What you can expect** * Interesting tasks in applied research * Intensive support during the project * Collaboration projekt with University of Stuttgart IFF and RWTH Aachen University DSME We value and promote the diversity of our employees' skills and therefore welcome all applications - regardless of age, gender, nationality, ethnic and social origin, religion, ideology, disability, sexual orientation and identity. Severely disabled persons are given preference in the event of equal suitability. **Job Segment:** Test Engineer, Manufacturing Engineer, Software Engineer, Training, Computer Science, Engineering, Education, Technology
Lade Jobdetails..
Über UnsProdukteKontaktImpressumDatenschutzNutzungsbedingungenCookie-Einstellungen
© 2025 Nejo
© 2025 nejo jobs