Nejo Logo
Jobs finden
nach Anstellungsart

Finde Jobs nach Arbeitszeit

  • Geringfügige Jobs
  • Teilzeit Jobs
  • Lehrstellen
  • Praktikumsplätze
nach Stadt

Jobs in deiner Nähe finden

  • Jobs in Wien
  • Jobs in Graz
  • Jobs in Linz
  • Jobs in Salzburg
  • Jobs in Innsbruck
  • weitere Städte
nach Beruf

Erkunde Jobs nach Berufsfeld

  • Fahrer Jobs
  • IT Jobs
  • Feuerwehr Jobs
  • Hausmeister Jobs
  • Vertrieb Jobs
  • weitere Berufe
nach Erfahrungslevel

Jobs passend zu deiner Erfahrung

  • Quereinsteiger Jobs
  • Berufseinsteiger Jobs
  • Manager Jobs
nach Arbeitsweise

Wähle deine bevorzugte Arbeitsweise

  • Remote Jobs
  • Home Office Jobs
Studenten
Schüler
Blog
Jobs finden
nach Anstellungsart

Finde Jobs nach Arbeitszeit

  • Geringfügige Jobs
  • Teilzeit Jobs
  • Lehrstellen
  • Praktikumsplätze
nach Stadt

Jobs in deiner Nähe finden

  • Jobs in Wien
  • Jobs in Graz
  • Jobs in Linz
  • Jobs in Salzburg
  • Jobs in Innsbruck
  • weitere Städte
nach Beruf

Erkunde Jobs nach Berufsfeld

  • Fahrer Jobs
  • IT Jobs
  • Feuerwehr Jobs
  • Hausmeister Jobs
  • Vertrieb Jobs
  • weitere Berufe
nach Erfahrungslevel

Jobs passend zu deiner Erfahrung

  • Quereinsteiger Jobs
  • Berufseinsteiger Jobs
  • Manager Jobs
nach Arbeitsweise

Wähle deine bevorzugte Arbeitsweise

  • Remote Jobs
  • Home Office Jobs
StudentenSchülerBlogNejo LinkedIn

Internship or thesis (Bachelor/Master) in the field of Reinforcement Learning(m/w/x)

Fraunhofer-Gesellschaft
Ingolstadt

You optimize traffic using multi-agent reinforcement learning and develop recommendation systems while exploring applications of quantum technology.

Anforderungen

  • •Enrolled in Bachelor's or Master's in related fields
  • •Very good academic performance
  • •Experience in research work on Reinforcement Learning
  • •Desirable experience in path planning or traffic optimization
  • •Knowledge of Python programming language
  • •Experience with deep learning frameworks like PyTorch
  • •Passion for research and problem-solving
  • •Structured, independent, and results-oriented work
  • •Excellent communication skills
  • •Ability to work in a team

Deine Aufgaben

  • •Traffic optimization using multi-agent Reinforcement Learning
  • •Develop recommendation systems for traffic optimization
  • •Bridge quantum technology and Reinforcement Learning
  • •Plan paths and trajectories in aerospace systems
  • •Create vision-language-action models for drones
  • •Facilitate multi-agent cooperation with Reinforcement Learning
  • •Plan missions for aerospace systems with evolutionary algorithms
  • •Implement single-shot Reinforcement Learning

Deine Vorteile

Herausfordernde Aufgaben
Interdisziplinäre Forschung
Zugang zu modernen Rechnerressourcen
Professionelle Betreuung
Flexible Arbeitszeiten

Original Beschreibung

City: Ingolstadt Date: Apr 2, 2025 # Internship or thesis (Bachelor/Master) in the field of Reinforcement Learning Are you ready to develop and implement the latest Reinforcement Learning approaches? At the Fraunhofer Application Center for "Connected Mobility and Infrastructure" in Ingolstadt, a unique opportunity opens up for you: Explore the potential of Reinforcement Learning to address challenges in the fields of autonomous aviation, traffic optimization, or fundamental research. In close collaboration with leading industry partners, you will ensure that your research results can be translated into practice, making a real difference. This position offers you the chance to actively contribute to groundbreaking technologies and to implement cutting-edge research approaches, particularly in the areas of Multi-Agent Reinforcement Learning and Hierarchical Reinforcement Learning. Seize the opportunity to work on highly relevant and practical research projects and experience interdisciplinary research at the forefront of technological innovation. With access to state-of-the-art computing resources, simulations, and datasets, you can fully unleash your ideas. We provide you with specialist supervision at the highest level to best support your personal and professional development. **What you will do** As an intern or as part of your thesis, you will become part of our dedicated team and work with state-of-the-art technology on exciting projects in the fields of autonomous aviation or traffic optimization. Apply your own ideas and immerse yourself in innovative research fields, including: * Traffic optimization using multi-agent Reinforcement Learning and hierarchical Reinforcement Learning * Reinforcement Learning-based recommendation systems for traffic optimization * Bridging quantum technology and Reinforcement Learning * Reinforcement Learning for path and trajectory planning in aerospace systems * Vision-language-action models for autonomous drone systems * Multi-agent cooperation using Reinforcement Learning and control barrier functions * Mission planning for aerospace systems using evolutionary algorithms and Reinforcement Learning * Single-shot Reinforcement Learning **What you bring to the table** * Enrolled in one of the following or related fields of study (Bachelor/Master): Computer Science, Data Science, Mathematics, Physics, Electrical and Information Engineering, mechatronics or a related subject area * Very good academic performance * Experience from previous own research work or courses in Reinforcement Learning and optimization * Experience in path planning / trajectory planning or traffic optimization is desirable * Knowledge of programming languages such as Python and experience with deep learning frameworks (e. g. PyTorch) * Passion for research and solving complex problems * Structured, independent and results-oriented way of working * Excellent communication skills and ability to work in a team **What you can expect** * Challenging tasks in cutting-edge and application-relevant subject areas * Interdisciplinary research on promising technologies * Access to state-of-the-art computing resources and a high-performance infrastructure * Professional supervision * Flexible working hours The weekly working time is 39 hours. This position is also available on a part-time basis. We value and promote the diversity of our employees' skills and therefore welcome all applications - regardless of age, gender, nationality, ethnic and social origin, religion, ideology, disability, sexual orientation and identity. Severely disabled persons are given preference in the event of equal suitability. Remuneration according to the general works agreement for employing assistant staff. **Job Segment:** Aerospace, Computer Science, Intern, Part Time, Research, Aviation, Technology, Entry Level
Lade Jobdetails..
Über UnsProdukteKontaktImpressumDatenschutzNutzungsbedingungenCookie-Einstellungen
© 2025 Nejo
© 2025 nejo jobs