Nejo Logo
Jobs finden
nach Anstellungsart

Finde Jobs nach Arbeitszeit

  • Geringfügige Jobs
  • Teilzeit Jobs
  • Lehrstellen
  • Praktikumsplätze
nach Stadt

Jobs in deiner Nähe finden

  • Jobs in Wien
  • Jobs in Graz
  • Jobs in Linz
  • Jobs in Salzburg
  • Jobs in Innsbruck
  • weitere Städte
nach Beruf

Erkunde Jobs nach Berufsfeld

  • Fahrer Jobs
  • IT Jobs
  • Feuerwehr Jobs
  • Hausmeister Jobs
  • Vertrieb Jobs
  • weitere Berufe
nach Erfahrungslevel

Jobs passend zu deiner Erfahrung

  • Quereinsteiger Jobs
  • Berufseinsteiger Jobs
  • Manager Jobs
nach Arbeitsweise

Wähle deine bevorzugte Arbeitsweise

  • Remote Jobs
  • Home Office Jobs
Studenten
Schüler
Blog
Jobs finden
nach Anstellungsart

Finde Jobs nach Arbeitszeit

  • Geringfügige Jobs
  • Teilzeit Jobs
  • Lehrstellen
  • Praktikumsplätze
nach Stadt

Jobs in deiner Nähe finden

  • Jobs in Wien
  • Jobs in Graz
  • Jobs in Linz
  • Jobs in Salzburg
  • Jobs in Innsbruck
  • weitere Städte
nach Beruf

Erkunde Jobs nach Berufsfeld

  • Fahrer Jobs
  • IT Jobs
  • Feuerwehr Jobs
  • Hausmeister Jobs
  • Vertrieb Jobs
  • weitere Berufe
nach Erfahrungslevel

Jobs passend zu deiner Erfahrung

  • Quereinsteiger Jobs
  • Berufseinsteiger Jobs
  • Manager Jobs
nach Arbeitsweise

Wähle deine bevorzugte Arbeitsweise

  • Remote Jobs
  • Home Office Jobs
StudentenSchülerBlogNejo LinkedIn

Internship / Master Thesis - Optimizing AD perception using Egocentric based matching metric(m/w/x)

CARIAD SE
Ingolstadt, München, Berlin

You will conduct research on multi-object tracking and safety in autonomous driving, implement advanced algorithms, and collaborate with experts to enhance perception systems.

Anforderungen

  • •Enrolled student in computer science
  • •Strong background in computer vision
  • •Proficient in Python, PyTorch, Git, OpenCV
  • •Experience with C++ is beneficial
  • •Excellent problem-solving skills
  • •Strong analytical and communication skills
  • •Collaborative attitude
  • •Familiarity with diverse tracking architectures

Deine Aufgaben

  • •Conduct in-depth research on multi-object tracking.
  • •Summarize findings on safety-critical applications.
  • •Implement and evaluate advanced perception algorithms.
  • •Train tracking systems using modular and end-to-end methods.
  • •Enhance bounding box accuracy with new techniques.
  • •Analyze algorithm performance with large-scale datasets.
  • •Collaborate with ADAS/AD perception experts.

Deine Vorteile

Remote work options
Duration of 3 to 6 months
35-hour work week

Original Beschreibung

# Internship / Master Thesis - Optimizing AD perception using Egocentric based matching metric (f/m/d) Job ID: 13834 Company: CARIAD SE Location: Ingolstadt, DE, 85053 München, DE, 80807 Berlin, DE, 10178 Department: IT Software Development Career Level: Students Working Model: Full-time Contract Type: Fixed-term Remote Working: By agreement Posting Date: May 10, 2025 ## YOUR TEAM To support our "ADAS/AD Predevelopment" team, we are currently looking for an intern or thesis student. Our department works on software for automated driving in urban environments. Within this department, we are a team of ambitious and highly motivated experts in the field of environment perception for self-driving vehicles. ## WHAT YOU WILL DO * Conduct an in-depth study and summarization of existing research related to multi-object tracking, safety-critical applications, and situation awareness in autonomous driving * Implement, train, and rigorously evaluate advanced perception algorithms for both modular (e.g., tracking-by-detection) and end-to-end multi-object tracking systems * Research and apply cutting-edge techniques, such as training tracking pipelines with new egocentric matching criteria integrated as loss functions, to directly enhance bounding box accuracy and robustness, particularly for partially occluded objects * Systematically analyze algorithm performance using large-scale datasets and contribute improvements to our AD perception stack * Collaborate closely with ADAS/AD perception experts on state-of-the-art autonomous driving challenges ## WHO YOU ARE * Enrolled student in computer science, electrical engineering, robotics, or related field with a strong focus on computer vision and machine learning (please specify expected date of your graduation or end of enrollment) * Strong background in computer vision (esp. multi-object tracking, object detection) and deep learning * Proficient in Python, PyTorch, Git and OpenCV. Experience with C++ is beneficial * Excellent problem-solving skills demonstrated through projects or prior experience; possess a research-oriented mindset * Strong analytical and communication skills (English required); collaborative attitude * Familiarity with diverse tracking architectures or advanced evaluation techniques is advantageous ## NICE TO KNOW * Remote work options within Germany * Duration: 3 to 6 months * 35-hour week At CARIAD, we embrace individuality and diversity because we believe our differences make us stronger. We actively seek to build teams with a variety of backgrounds, perspectives, and experiences. Our goal is to create an environment where everyone feels valued and empowered to contribute.
Lade Jobdetails..
Über UnsProdukteKontaktImpressumDatenschutzNutzungsbedingungenCookie-Einstellungen
© 2025 Nejo
© 2025 nejo jobs