Die KI-Suchmaschine für Jobs
Data Engineer / ML Ops(m/w/x)
Beschreibung
As a Data Engineer specializing in ML Ops, you will design and maintain data infrastructure, ensuring seamless data flow from sensors to analytics. This role involves collaborating with various teams to optimize data processes and uphold data quality.
Lass KI die perfekten Jobs für dich finden!
Lade deinen CV hoch und die Nejo-KI findet passende Stellenangebote für dich.
Anforderungen
- •3+ years of hands-on experience building production data pipelines in the cloud (AWS, GCP, or Azure)
- •Proficiency in Python, SQL, and at least one big-data framework
- •Familiarity with ML Ops tooling: DVC, MLflow, Kubeflow, or similar
- •Experience designing and operating data warehouses/data lakes (e.g., Redshift, Snowflake, BigQuery, Delta Lake)
- •Strong understanding of distributed systems, data serialization (Parquet, Avro), and batch vs. streaming paradigms
- •Excellent problem-solving skills and the ability to work in ambiguous, fast-paced environments
- •Background in robotics or sensor data (radar, LiDAR, camera pipelines)
- •Knowledge of real-time data processing and edge-computing constraints
- •Experience with infrastructure as code (Terraform, CloudFormation) and CI/CD for data workflows
- •Familiarity with Kubernetes and containerized deployments
- •Exposure to vision-language or action-planning ML models
Berufserfahrung
3 Jahre
Aufgaben
- •Build and operate data pipelines
- •Ingest, process, and transform multi-sensor telemetry
- •Design scalable storage solutions
- •Architect high-throughput, low-latency data lakes and warehouses
- •Enable ML Ops workflows
- •Integrate DVC or MLflow for model training automation
- •Track data and model lineage
- •Ensure data quality through validation and monitoring
- •Implement alerting for anomalies and schema changes
- •Collaborate cross-functionally with Embedded Systems and Robotics teams
- •Align on data schemas, APIs, and real-time requirements
- •Optimize performance of distributed processing and queries
- •Tune storage layouts for cost-efficiency and throughput
- •Document data schemas and pipeline architectures
- •Evangelize ML Ops practices within the team
Tools & Technologien
Sprachen
Englisch – verhandlungssicher
Benefits
Attraktive Vergütung
- •Attractive compensation package
- •Stock options
Snacks & Getränke
- •Beverages on-site
Team Events & Ausflüge
- •Regular social events
Sonstige Vorteile
- •Assistance with relocation
- BIT CapitalVollzeitnur vor OrtSeniorBerlin
- Prior Labs
ML Engineer, Cloud Platform(m/w/x)
Vollzeitnur vor OrtBerufserfahrenab 140.000 / JahrBerlin, Freiburg im Breisgau - Trade Republic
Data Engineer(m/w/x)
Vollzeitnur vor OrtBerufserfahrenBerlin - Ströer SE & Co. KGaA
Data Engineer(m/w/x)
Vollzeitnur vor OrtBerufserfahrenBerlin - FREENOW
Data Engineer(m/w/x)
Vollzeitnur vor OrtBerufserfahrenHamburg, Berlin
Data Engineer / ML Ops(m/w/x)
Die KI-Suchmaschine für Jobs
Beschreibung
As a Data Engineer specializing in ML Ops, you will design and maintain data infrastructure, ensuring seamless data flow from sensors to analytics. This role involves collaborating with various teams to optimize data processes and uphold data quality.
Lass KI die perfekten Jobs für dich finden!
Lade deinen CV hoch und die Nejo-KI findet passende Stellenangebote für dich.
Anforderungen
- •3+ years of hands-on experience building production data pipelines in the cloud (AWS, GCP, or Azure)
- •Proficiency in Python, SQL, and at least one big-data framework
- •Familiarity with ML Ops tooling: DVC, MLflow, Kubeflow, or similar
- •Experience designing and operating data warehouses/data lakes (e.g., Redshift, Snowflake, BigQuery, Delta Lake)
- •Strong understanding of distributed systems, data serialization (Parquet, Avro), and batch vs. streaming paradigms
- •Excellent problem-solving skills and the ability to work in ambiguous, fast-paced environments
- •Background in robotics or sensor data (radar, LiDAR, camera pipelines)
- •Knowledge of real-time data processing and edge-computing constraints
- •Experience with infrastructure as code (Terraform, CloudFormation) and CI/CD for data workflows
- •Familiarity with Kubernetes and containerized deployments
- •Exposure to vision-language or action-planning ML models
Berufserfahrung
3 Jahre
Aufgaben
- •Build and operate data pipelines
- •Ingest, process, and transform multi-sensor telemetry
- •Design scalable storage solutions
- •Architect high-throughput, low-latency data lakes and warehouses
- •Enable ML Ops workflows
- •Integrate DVC or MLflow for model training automation
- •Track data and model lineage
- •Ensure data quality through validation and monitoring
- •Implement alerting for anomalies and schema changes
- •Collaborate cross-functionally with Embedded Systems and Robotics teams
- •Align on data schemas, APIs, and real-time requirements
- •Optimize performance of distributed processing and queries
- •Tune storage layouts for cost-efficiency and throughput
- •Document data schemas and pipeline architectures
- •Evangelize ML Ops practices within the team
Tools & Technologien
Sprachen
Englisch – verhandlungssicher
Benefits
Attraktive Vergütung
- •Attractive compensation package
- •Stock options
Snacks & Getränke
- •Beverages on-site
Team Events & Ausflüge
- •Regular social events
Sonstige Vorteile
- •Assistance with relocation
Über das Unternehmen
sensmore
Branche
Construction
Beschreibung
The company automates the world's largest machines with unprecedented intelligence, integrating robotics into a platform for productivity and safety.
- BIT Capital
Senior Data Engineer(m/w/x)
Vollzeitnur vor OrtSeniorBerlin - Prior Labs
ML Engineer, Cloud Platform(m/w/x)
Vollzeitnur vor OrtBerufserfahrenab 140.000 / JahrBerlin, Freiburg im Breisgau - Trade Republic
Data Engineer(m/w/x)
Vollzeitnur vor OrtBerufserfahrenBerlin - Ströer SE & Co. KGaA
Data Engineer(m/w/x)
Vollzeitnur vor OrtBerufserfahrenBerlin - FREENOW
Data Engineer(m/w/x)
Vollzeitnur vor OrtBerufserfahrenHamburg, Berlin