Die KI-Suchmaschine für Jobs
Master Thesis in Validation and Optimization of Controllers Using Foundation Models(m/w/x)
Beschreibung
In this role, you will validate controllers for nonlinear dynamical systems using a data-driven approach. Your work will involve conducting literature reviews, selecting models, and integrating them into simulation environments, ultimately optimizing controller performance.
Lass KI die perfekten Jobs für dich finden!
Lade deinen CV hoch und die Nejo-KI findet passende Stellenangebote für dich.
Anforderungen
- •Master's degree in Engineering, Computer Science, Robotics, Mathematics, or comparable
- •Experience with dynamic systems, simulation, machine learning, system identification, and control theory
- •Motivated self-management, clear communication of complex issues, and independent task structuring
- •On-site presence required
- •Fluency in English
- •Enrollment at university
Ausbildung
Aufgaben
- •Focus on validating controllers for nonlinear dynamical systems
- •Explore a data-driven validation approach
- •Identify requirements for closed-loop simulation of dynamic systems
- •Conduct a literature review on state-of-the-art foundation model architectures
- •Compare foundation models for modeling dynamic systems
- •Design and implement a data-driven workflow
- •Develop a strategy for data selection and preparation
- •Fine-tune selected foundation models
- •Generate additional measurements for data when needed
- •Systematically evaluate the accuracy of fine-tuned models
- •Compare fine-tuned models with traditional physics-based and data-based models
- •Analyze model performance, focusing on corner cases
- •Integrate fine-tuned models into a closed-loop simulation environment
- •Validate performance of existing controllers
- •Explore optimization possibilities for controllers
- •Analyze trade-offs between model accuracy, simulation speed, and computational resources
- •Provide recommendations for practical applications
Sprachen
Englisch – verhandlungssicher
- Fraunhofer-GesellschaftVollzeitPraktikumnur vor OrtStuttgart
- Bosch Group
Thesis in Development of a Learning Based Compositional Electrical Drive Model(m/w/x)
VollzeitPraktikumnur vor OrtRenningen - Fraunhofer-Gesellschaft
Masterthesis - Reinforcement Learning approach for path following and base control(m/w/x)
Vollzeitnur vor OrtKeine AngabeStuttgart - Fraunhofer-Gesellschaft
Master Thesis - Reinforcement Learning for wheeled, bipedal robots(m/w/x)
VollzeitPraktikumnur vor OrtStuttgart - Bosch Group
Masterarbeit im Bereich adaptiver Regelung von elektrischen Antrieben(m/w/x)
VollzeitPraktikumnur vor OrtRenningen
Master Thesis in Validation and Optimization of Controllers Using Foundation Models(m/w/x)
Die KI-Suchmaschine für Jobs
Beschreibung
In this role, you will validate controllers for nonlinear dynamical systems using a data-driven approach. Your work will involve conducting literature reviews, selecting models, and integrating them into simulation environments, ultimately optimizing controller performance.
Lass KI die perfekten Jobs für dich finden!
Lade deinen CV hoch und die Nejo-KI findet passende Stellenangebote für dich.
Anforderungen
- •Master's degree in Engineering, Computer Science, Robotics, Mathematics, or comparable
- •Experience with dynamic systems, simulation, machine learning, system identification, and control theory
- •Motivated self-management, clear communication of complex issues, and independent task structuring
- •On-site presence required
- •Fluency in English
- •Enrollment at university
Ausbildung
Aufgaben
- •Focus on validating controllers for nonlinear dynamical systems
- •Explore a data-driven validation approach
- •Identify requirements for closed-loop simulation of dynamic systems
- •Conduct a literature review on state-of-the-art foundation model architectures
- •Compare foundation models for modeling dynamic systems
- •Design and implement a data-driven workflow
- •Develop a strategy for data selection and preparation
- •Fine-tune selected foundation models
- •Generate additional measurements for data when needed
- •Systematically evaluate the accuracy of fine-tuned models
- •Compare fine-tuned models with traditional physics-based and data-based models
- •Analyze model performance, focusing on corner cases
- •Integrate fine-tuned models into a closed-loop simulation environment
- •Validate performance of existing controllers
- •Explore optimization possibilities for controllers
- •Analyze trade-offs between model accuracy, simulation speed, and computational resources
- •Provide recommendations for practical applications
Sprachen
Englisch – verhandlungssicher
Über das Unternehmen
Bosch Group
Branche
Engineering
Beschreibung
Das Unternehmen entwickelt hochwertige Technologien und Dienstleistungen, die das Leben der Menschen verbessern.
- Fraunhofer-Gesellschaft
Masterthesis - Model Predictive Path Following with System Identification and Wheel Slip Estimation(m/w/x)
VollzeitPraktikumnur vor OrtStuttgart - Bosch Group
Thesis in Development of a Learning Based Compositional Electrical Drive Model(m/w/x)
VollzeitPraktikumnur vor OrtRenningen - Fraunhofer-Gesellschaft
Masterthesis - Reinforcement Learning approach for path following and base control(m/w/x)
Vollzeitnur vor OrtKeine AngabeStuttgart - Fraunhofer-Gesellschaft
Master Thesis - Reinforcement Learning for wheeled, bipedal robots(m/w/x)
VollzeitPraktikumnur vor OrtStuttgart - Bosch Group
Masterarbeit im Bereich adaptiver Regelung von elektrischen Antrieben(m/w/x)
VollzeitPraktikumnur vor OrtRenningen